
NAG Fortran Library Routine Document

D02KDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02KDF finds a specified eigenvalue of a regular or singular second-order Sturm–Liouville system on a
finite or infinite interval, using a Pruefer transformation and a shooting method. Provision is made for
discontinuities in the coefficient functions or their derivatives.

2 Specification

SUBROUTINE D02KDF(XPOINT, M, COEFFN, BDYVAL, K, TOL, ELAM, DELAM, HMAX,
1 MAXIT, MAXFUN, MONIT, IFAIL)

INTEGER M, K, MAXIT, MAXFUN, IFAIL
real XPOINT(M), TOL, ELAM, DELAM, HMAX(2,M)
EXTERNAL COEFFN, BDYVAL, MONIT

3 Description

D02KDF finds a specified eigenvalue ~�� of a Sturm–Liouville system defined by a self-adjoint differential
equation of the second-order

ðpðxÞy0Þ0 þ qðx;�Þy ¼ 0; a < x < b;

together with appropriate boundary conditions at the two, finite or infinite, end-points a and b. The
functions p and q, which are real-valued, must be defined by a subroutine COEFFN. The boundary
conditions must be defined by a subroutine BDYVAL, and in the case of a singularity at a or b take the
form of an asymptotic formula for the solution near the relevant end-point.

For the theoretical basis of the numerical method to be valid, the following conditions should hold on the
coefficient functions:

(a) pðxÞ must be non-zero and of one sign throughout the interval ða; bÞ; and

(b) @q
@� must be of one sign throughout ða; bÞ for all relevant values of �, and must not be identically zero

as x varies for any �.

Points of discontinuity in the functions p and q or their derivatives are allowed, and should be included as
‘break-points’ in the array XPOINT.

The eigenvalue ~�� is determined by a shooting method based on the Scaled Pruefer form of the differential
equation as described in Pryce (1981), with certain modifications. The Pruefer equations are integrated by
a special internal routine using Merson’s Runge–Kutta formula with automatic control of local error.

Providing certain assumptions (see Section 8.1) are met, the computed value of ~�� will have a mixed
absolute/relative error, estimated by the user-supplied value TOL.

A good account of the theory of Sturm–Liouville systems, with some description of Pruefer
transformations, is given in Chapter X of Birkhoff and Rota (1962). An introduction to the user of
Pruefer transformations for the numerical solution of eigenvalue problems arising from physics and
chemistry is in Bailey (1966).

The scaled Pruefer method is fairly recent, and is described in a short note in Pryce and Hargrave (1977)
and in Pryce (1981).

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.1

4 References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover
Publications

Bailey P B (1966) Sturm–Liouville eigenvalues via a phase function SIAM J. Appl. Math. 14 242–249

Banks D O and Kurowski I (1968) Computation of eigenvalues of singular Sturm–Liouville Systems Math.
Comput. 22 304–310

Birkhoff G and Rota G C (1962) Ordinary Differential Equations Ginn & Co., Boston and New York

Pryce J D (1981) Two codes for Sturm–Liouville problems Technical Report CS-81-01 Department of
Computer Science, Bristol University

Pryce J D and Hargrave B A (1977) The scaled Prüfer method for one-parameter and multi-parameter
eigenvalue problems in ODEs IMA Numerical Analysis Newsletter 1 (3)

5 Parameters

1: XPOINT(M) – real array Input

On entry: the points where the boundary conditions computed by BDYVAL are to be imposed, and
also any break-points, i.e., XPOINT(1) to XPOINTðmÞ must contain values x1; . . . ; xm such that

x1 � x2 < x3 < � � � < xm�1 � xm

with the following meanings:

(a) x1 and xm are left and right end-points, a and b, of the domain of definition of the Sturm–
Liouville system if these are finite. If either of a or b is infinite, the corresponding value x1 or
xm may be a more-or-less arbitrary ‘large’ number of appropriate sign.

(b) x2 and xm�1 are the Boundary Matching Points (BMP), that is the points at which the left and
right boundary conditions computed in BDYVAL are imposed.

If the left-hand end-point is a regular point then the user should set x2 ¼ x1 (¼ a), while if it is
a singular point the user must set x2 > x1. Similarly xm�1 ¼ xm (¼ b) if the right-hand end-
point is regular, and xm�1 < xm if it is singular.

(c) The remaining m� 4 points x3; . . . ; xm�2, if any, define ‘break-points’ which divide the
interval ½x2; xm�1� into m� 3 sub-intervals

i1 ¼ ½x2; x3�; . . . ; im�3 ¼ ½xm�2; xm�1�:
Numerical integration of the differential equation is stopped and restarted at each break-point.
In simple cases no break-points are needed. However, if pðxÞ or qðx;�Þ are given by different
formulae in different parts of the interval, then integration is more efficient if the range is
broken up by break-points in the appropriate way. Similarly points where any jumps occur in
pðxÞ or qðx;�Þ, or in their derivatives up to the fifth-order, should appear as break-points.

Examples are given in Section 8 and Section 9. XPOINT determines the position of the
Shooting Matching Point (SMP), as explained in Section 8.3.

Constraint: XPOINTð1Þ � XPOINTð2Þ < � � � < XPOINTðM� 1Þ � XPOINTðMÞ.

2: M – INTEGER Input

On entry: the number of points in the array XPOINT.

Constraint: M � 4.

3: COEFFN – SUBROUTINE, supplied by the user. External Procedure

COEFFN must compute the values of the coefficient functions pðxÞ and qðx;�Þ for given values of
x and �. Section 3 states conditions which p and q must satisfy.

D02KDF NAG Fortran Library Manual

D02KDF.2 [NP3546/20A]

Its specification is:

SUBROUTINE COEFFN(P, Q, DQDL, X, ELAM, JINT)

INTEGER JINT
real P, Q, DQDL, X, ELAM

1: P – real Output

On exit: the value of pðxÞ for the current value of x.

2: Q – real Output

On exit: the value of qðx;�Þ for the current value of x and the current trial value of �.

3: DQDL – real Output

On exit: the value of @q
@� for the current value of x and the current trial value of �.

However DQDL is only used in error estimation and an approximation (say to within 20
per cent) will suffice.

4: X – real Input

On entry: the current value of x.

5: ELAM – real Input

On entry: the current trial value of the eigenvalue parameter �.

6: JINT – INTEGER Input

On entry: the index j of the sub-interval ij (see specification of XPOINT) in which x lies.

COEFFN must be declared as EXTERNAL in the (sub)program from which D02KDF is called.
Parameters denoted as Input must not be changed by this procedure.

See Section 8.4 and Section 9 for examples.

4: BDYVAL – SUBROUTINE, supplied by the user. External Procedure

BDYVAL must define the boundary conditions. For each end-point, BDYVAL must return (in YL

or YR) values of yðxÞ and pðxÞy0ðxÞ which are consistent with the boundary conditions at the end-
points; only the ratio of the values matters. Here x is a given point (XL or XR) equal to, or close
to, the end-point.

For a regular end-point (a, say), x ¼ a, a boundary condition of the form

c1yðaÞ þ c2y
0ðaÞ ¼ 0

can be handled by returning constant values in YL, e.g., YLð1Þ ¼ c2 and YLð2Þ ¼ �c1pðaÞ.
For a singular end-point however, YL(1) and YL(2) will in general be functions of XL and ELAM,
and YR(1) and YR(2) functions of XR and ELAM, usually derived analytically from a power-series
or asymptotic expansion. Examples are given in Section 8.5 and Section 9.

Its specification is:

SUBROUTINE BDYVAL(XL, XR, ELAM, YL, YR)

real XL, XR, ELAM, YL(3), YR(3)

1: XL – real Input

On entry: if a is a regular end-point of the system (so that a ¼ x1 ¼ x2), then XL contains
a. If a is a singular point (so that a � x1 < x2), then XL contains a point x such that
x1 < x � x2.

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.3

2: XR – real Input

On entry: if b is a regular end-point of the system (so that xm�1 ¼ xm ¼ b), then XR
contains b. If b is a singular point (so that xm�1 < xm � b), then XR contains a point x
such that xm�1 � x < xm.

3: ELAM – real Input

On entry: the current trial value of �.

4: YL(3) – real array Output

On exit: YL(1) and YL(2) should contain values of yðxÞ and pðxÞy0ðxÞ respectively (not
both zero) which are consistent with the boundary condition at the left-hand end-point,
given by x = XL. YL(3) should not be set.

5: YR(3) – real array Output

On exit: YR(1) and YR(2) should contain values of yðxÞ and pðxÞy0ðxÞ respectively (not
both zero) which are consistent with the boundary condition at the right-hand end-point,
given by x = XR. YR(3) should not be set.

BDYVAL must be declared as EXTERNAL in the (sub)program from which D02KDF is called.
Parameters denoted as Input must not be changed by this procedure.

5: K – INTEGER Input

On entry: the index k of the required eigenvalue when the eigenvalues are ordered

�0 < �1 < �2 < � � � < �k < � � �
Constraint: K � 0.

6: TOL – real Input

On entry: the tolerance parameter which determines the accuracy of the computed eigenvalue. The
error estimate held in DELAM on exit satisfies the mixed absolute/relative error test

DELAM � TOL�maxð1:0; jELAMjÞ ð1Þ
where ELAM is the final estimate of the eigenvalue. DELAM is usually somewhat smaller than the
right-hand side of (1) but not several orders of magnitude smaller.

Constraint: TOL > 0:0.

7: ELAM – real Input/Output

On entry: an initial estimate of the eigenvalue ~��.

On exit: the final computed estimate, whether or not an error occurred.

8: DELAM – real Input/Output

On entry: an indication of the scale of the problem in the �-direction. DELAM holds the initial
‘search step’ (positive or negative). Its value is not critical but the first two trial evaluations are
made at ELAM and ELAMþ EDELAM, so the routine will work most efficiently if the eigenvalue
lies between these values. A reasonable choice (if a closer bound is not known) is half the distance
between adjacent eigenvalues in the neighbourhood of the one sought. In practice, there will often
be a problem, similar to the one in hand but with known eigenvalues, which will help one to choose
initial values for ELAM and DELAM.

If DELAM ¼ 0:0 on entry, it is given the default value of 0:25�maxð1:0; jELAMjÞ.
On exit: with IFAIL=0, DELAM holds an estimate of the absolute error in the computed eigenvalue,

that is j~��� ELAMj � DELAM (In Section 8.2 we discuss the assumptions under which this is
true.) The true error is rarely more than twice, or less than a tenth, of the estimated error.

D02KDF NAG Fortran Library Manual

D02KDF.4 [NP3546/20A]

With IFAIL 6¼ 0, DELAM may hold an estimate of the error, or its initial value, depending on the
value of IFAIL. See Section 6 for further details.

9: HMAX(2,M) – real array Input/Output

On entry: HMAXð1; jÞ should contain a maximum step size to be used by the differential equation
code in the jth sub-interval ij (as described in the specification of parameter XPOINT) for

j ¼ 1; 2; . . . ;m� 3. If it is zero the routine generates a maximum step size internally.

It is recommended that HMAXð1; jÞ be set to zero unless the coefficient functions p and q have
features (such as a narrow peak) within the jth sub-interval that could be ‘missed’ if a long step
were taken. In such a case HMAXð1; jÞ should be set to about half the distance over which the
feature should be observed. Too small a value will increase the computing time for the routine. See
Section 8 for further suggestions.

The rest of the array is used as workspace.

On exit: HMAXð1;m� 1Þ and HMAXð1;mÞ contain the sensitivity coefficients �l; �r, described in
Section 8.6. Other entries also contain diagnostic output in case of an error exit (see Section 6 for
details).

10: MAXIT – INTEGER Input/Output

On entry: a bound on nr, the number of rootfinding iterations allowed, that is the number of trial
values of � that are used; if MAXIT � 0, no such bound is assumed.

Suggested value: MAXIT ¼ 0. (See also under MAXFUN.)

On exit: MAXIT will have been decreased by the number of iterations actually performed, whether
or not it was positive on entry.

11: MAXFUN – INTEGER Input

On entry: a bound on nf , the number of calls to COEFFN made in any one rootfinding iteration. If

MAXFUN � 0, no such bound is assumed.

Suggested value: MAXFUN ¼ 0.

MAXFUN and MAXIT may be used to limit the computational cost of a call to D02KDF, which is
roughly proportional to nr � nf .

12: MONIT – SUBROUTINE, supplied by the user. External Procedure

MONIT is called by D02KDF at the end of each rootfinding iteration and allows the user to monitor
the course of the computation by printing out the parameters (see Section 9 for an example).

If no monitoring is required, the dummy subroutine D02KAY may be used. (D02KAY is included
in the NAG Fortran Library. In some implementations of the Library the name is changed to
KAYD02: refer to the Users’ Note for your implementation.)

Its specification is:

SUBROUTINE MONIT(MAXIT, IFLAG, ELAM, FINFO)

INTEGER MAXIT, IFLAG
real ELAM, FINFO(15)

1: MAXIT – INTEGER Input

On entry: the current value of the parameter MAXIT of D02KDF, which is decreased by
one at each iteration.

2: IFLAG – INTEGER Input

On entry: IFLAG describes what phase the computation is in.

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.5

IFLAG < 0

An error occurred in the computation of the ‘miss-distance’ at this iteration; an error
exit from D02KDF with IFAIL ¼ �IFLAG will follow.

IFLAG ¼ 1

The routine is trying to bracket the eigenvalue ~��.

IFLAG ¼ 2

The routine is converging to the eigenvalue ~�� (having already bracketed it).

3: ELAM – real Input

On entry: the current trial value of �.

4: FINFO(15) – real array Input

On entry: information about the behaviour of the shooting method, and diagnostic
information in the case of errors. It should not normally be printed in full if no error has
occurred (that is, if IFLAG > 0), though the first few components may be of interest to the
user. In case of an error (IFLAG < 0) all the components of FINFO should be printed.

The contents of FINFO are as follows:

FINFO(1), the current value of the ‘miss-distance’ or ‘residual’ function fð�Þ on
which the shooting method is based. FINFO(1) is set to zero if FLAG < 0.

FINFO(2), an estimate of the quantity �� defined as follows. Consider the
perturbation in the miss-distance fð�Þ that would result if the local error, in the
solution of the differential equation, were always positive and equal to its maximum
permitted value. Then �� is the perturbation in � that would have the same effect
on fð�Þ. Thus, at the zero of fð�Þ, j��j is an approximate bound on the
perturbation of the zero (that is the eigenvalue) caused by errors in numerical
solution. If �� is very large then it is possible that there has been a programming
error in COEFFN such that q is independent of �. If this is the case, an error exit
with IFAIL=5 should follow. FINFO(2) is set to zero if IFLAG < 0.

FINFO(3), the number of internal iterations, using the same value of � and tighter
accuracy tolerances, needed to bring the accuracy (that is the value of ��) to an
acceptable value. Its value should normally be 1.0, and should almost never exceed
2.0.

FINFO(4), the number of calls to COEFFN at this iteration.

FINFO(5), the number of successful steps taken by the internal differential equation
solver at this iteration.

FINFO(6), the number of unsuccessful steps used by the internal integrator at this
iteration.

FINFO(7), the number of successful steps at the maximum step size taken by the
internal integrator at this iteration.

FINFO(8), is not used.

FINFO(9) to FINFO(15), set to zero, unless IFLAG < 0 in which case they hold
the following values describing the point of failure:

FINFO(9), the index of the sub-interval where failure occurred, in the range
1 to m� 3. In case of an error in BDYVAL, it is set to 0 or m� 2
depending on whether the left or right boundary condition caused the error.

FINFO(10), the value of the independent variable x, the point at which the
error occurred. In case of an error in BDYVAL, it is set to the value of XL
or XR as appropriate (see the specification of BDYVAL).

D02KDF NAG Fortran Library Manual

D02KDF.6 [NP3546/20A]

FINFO(11), FINFO(12), FINFO(13), the current value of the Pruefer
dependent variables �, � and � respectively. These are set to zero in case
of an error in BDYVAL. (See D02KEF for a description of these variables.)

FINFO(14), the local-error tolerance being used by the internal integrator at
the point of failure. This is set to zero in the case of an error in BDYVAL.

FINFO(15), the last integration mesh point. This is set to zero in the case of
an error in BDYVAL.

MONIT must be declared as EXTERNAL in the (sub)program from which D02KDF is called.
Parameters denoted as Input must not be changed by this procedure.

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A parameter error. All parameters (except IFAIL) are left unchanged. The reason for the error is
shown by the value of HMAX(2,1) as follows:

HMAX(2,1) = 1: M < 4;

HMAX(2,1) = 2: K < 0;

HMAX(2,1) = 3: TOL � 0:0;

HMAX(2,1) = 4: XPOINT(1) to XPOINTðmÞ are not in ascending order. HMAX(2,2) gives the
position i in XPOINT where this was detected.

IFAIL ¼ 2

At some call to BDYVAL, invalid values were returned, that is, either YLð1Þ ¼ YLð2Þ ¼ 0:0, or
YRð1Þ ¼ YRð2Þ ¼ 0:0 (a programming error in BDYVAL). See the last call of MONIT for details.

This error exit will also occur if pðxÞ is zero at the point where the boundary condition is imposed.
Probably BDYVAL was called with XL equal to a singular end-point a or with XR equal to a
singular end-point b.

IFAIL ¼ 3

At some point between XL and XR the value of pðxÞ computed by COEFFN became zero or
changed sign. See the last call of MONIT for details.

IFAIL ¼ 4

MAXIT > 0 on entry, and after MAXIT iterations the eigenvalue had not been found to the required
accuracy.

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.7

IFAIL ¼ 5

The ‘bracketing’ phase (with parameter IFLAG of MONIT equal to 1) failed to bracket the
eigenvalue within ten iterations. This is caused by an error in formulating the problem (for
example, q is independent of �), or by very poor initial estimates of ELAM, DELAM.

On exit, ELAM and ELAMþ DELAM give the end-points of the interval within which no
eigenvalue was located by the routine.

IFAIL ¼ 6

MAXFUN > 0 on entry, and the last iteration was terminated because more than MAXFUN calls to
COEFFN were used. See the last call of MONIT for details.

IFAIL ¼ 7

To obtain the desired accuracy the local error tolerance was set so small at the start of some sub-
interval that the differential equation solver could not choose an initial step size large enough to
make significant progress. See the last call of MONIT for diagnostics.

IFAIL ¼ 8

At some point inside a sub-interval the step size in the differential equation solver was reduced to a
value too small to make significant progress (for the same reasons as with IFAIL=7). This could be
due to pathological behaviour of pðxÞ and qðx;�Þ or to an unreasonable accuracy requirement or to
the current value of � making the equations ‘stiff’. See the last call of MONIT for details.

IFAIL ¼ 9

TOL is too small for the problem being solved and the machine precision being used. The final
value of ELAM should be a very good approximation to the eigenvalue.

IFAIL ¼ 10

C05AZF, called by D02KDF, has terminated with the error exit corresponding to a pole of the
residual function fð�Þ. This error exit should not occur, but if it does, try solving the problem again
with a smaller TOL.

IFAIL ¼ 11 (D02KDY)
IFAIL ¼ 12 (C05AZF)

A serious error has occurred in the specified routine. Check all subroutine calls and array
dimensions. Seek expert help.

HMAX(2,1) holds the failure exit number from the routine where the failure occurred. In the case
of a failure in C05AZF, HMAX(2,2) holds the value of parameter IND of C05AZF.

Note: error exits with IFAIL ¼ 2, 3, 6, 7, 8, 11 are caused by being unable to set up or solve the
differential equation at some iteration, and will be immediately preceded by a call of MONIT giving
diagnostic information. For other errors, diagnostic information is contained in HMAXð2; jÞ, for
j ¼ 1; 2; . . . ;m, where appropriate.

7 Accuracy

See the discussion in Section 8.2.

8 Further Comments

8.1 Timing

This depends on the complexity of the coefficient functions, whether they or their derivatives are rapidly
changing, the tolerance demanded, and how many iterations are needed to obtain convergence. The
amount of work per iteration is roughly doubled when TOL is divided by 16. To make economical use of
the routine, one should try to obtain good initial values for ELAM and DELAM, and where appropriate

D02KDF NAG Fortran Library Manual

D02KDF.8 [NP3546/20A]

good asymptotic formulae. Also the boundary matching points should not be set unnecessarily close to
singular points.

8.2 General Description of the Algorithm

A shooting method, for differential equation problems containing unknown parameters, relies on the
construction of a ‘miss-distance function’, which for given trial values of the parameters measures how far
the conditions of the problem are from being met. The problem is then reduced to one of finding the
values of the parameters for which the miss-distance function is zero, that is to a root-finding process.
Shooting methods differ mainly in how the miss-distance is defined.

This routine defines a miss-distance fð�Þ based on the rotation round the origin of the point

PðxÞ ¼ ðpðxÞy0ðxÞ; yðxÞÞ in the Phase Plane as the solution proceeds from a to b. The boundary
conditions define the ray (i.e., two-sided line through the origin) on which pðxÞ should start, and the ray
on which it should finish. The eigenvalue index k defines the total number of half-turns it should make.
Numerical solution is actually done by ‘shooting forward’ from x ¼ a and ‘shooting backward’ from
x ¼ b to a matching point x ¼ c. Then fð�Þ is taken as the angle between the rays to the two resulting

points PaðcÞ and PbðcÞ. A relative scaling of the py0 and y axes, based on the behaviour of the coefficient
functions p and q, is used to improve the numerical behaviour.

Pa(c)
P(a)

P(b)

Pb(c)

y

py'

Figure 1

The resulting function fð�Þ is monotonic over �1 < � < 1, increasing if @q
@� > 0 and decreasing if

@q
@� < 0, with a unique zero at the desired eigenvalue ~��. The routine measures fð�Þ in units of a half-turn.

This means that as � increases, fð�Þ varies by about 1 as each eigenvalue is passed. (This feature implies
that the values of fð�Þ at successive iterations – especially in the early stages of the iterative process – can
be used with suitable extrapolation or interpolation to help the choice of initial estimates for eigenvalues
near to the one currently being found.)

The routine actually computes a value for fð�Þ with errors, arising from the local errors of the differential
equation code and from the asymptotic formulae provided by the user if singular points are involved.
However, the error estimate output in DELAM is usually fairly realistic, in that the actual error

j~��� ELAMj is within an order of magnitude of DELAM.

8.3 The Position of the Shooting Matching Point c

This point is always one of the values xi in array XPOINT. It is chosen to be the value of that xi,
2 � i � m� 1, that lies closest to the middle of the interval ½x2; xm�1�. If there is a tie, the rightmost
candidate is chosen. In particular if there are no break-points, then c ¼ xm�1 (¼ x3); that is, the shooting
is from left to right in this case. A break-point may be inserted purely to move c to an interior point of the
interval, even though the form of the equations does not require it. This often speeds up convergence
especially with singular problems.

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.9

8.4 Examples of Coding the COEFFN Routine

Coding COEFFN is straightforward except when break-points are needed. The examples below show:

(a) a simple case,

(b) a case where discontinuities in the coefficient functions or their derivatives necessitate break-points,
and

(c) a case where break-points together with the HMAX parameter are an efficient way to deal with a
coefficient function that is well-behaved except over one short interval.

(Some of these cases are among the examples in Section 9.)

Example A

The modified Bessel equation

xðxy0Þ0 þ ð�x2 � �2Þy ¼ 0:

Assuming the interval of solution does not contain the origin and dividing through by x, we have

pðxÞ ¼ x; qðx;�Þ ¼ �x� �2=x. The code for COEFFN could be:

SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)
...
P = X
Q = ELAM*X - NU*NU/X
DQDL = X
RETURN
END

where NU (standing for �) is a real variable that might be defined in a DATA statement, or might be in
user-declared COMMON so that its value could be set in the main program.

Example B

A Schroedinger equation

y00 þ ð�þ qðxÞÞy ¼ 0;

where

qðxÞ ¼
x2 � 10 ðjxj � 4Þ

6

jxj ðjxj > 4Þ

8><
>:

over some interval ‘approximating to ð�1;1Þ’, say ½�20; 20�. Here we need break-points at �4, forming
three sub-intervals i1 ¼ ½�20;�4�, i2 ¼ ½�4; 4�, i3 ¼ ½4; 20�. The code for COEFFN could be:

SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)
...
IF (JINT.EQ.2) THEN

Q = ELAM + X*X - 10.0E0
ELSE

Q = ELAM + 6.0E0/ABS(X)
ENDIF
P = 1.0E0
DQDL = 1.0
RETURN
END

The array XPOINT would contain the values x1, �20:0, �4:0, þ4:0, þ20:0, x6 and m would be 6. The
choice of appropriate values for x1 and x6 depends on the form of the asymptotic formula computed by
BDYVAL and the technique is discussed in the next sub-section.

D02KDF NAG Fortran Library Manual

D02KDF.10 [NP3546/20A]

Example C

y00 þ �ð1� 2e�100x2Þy ¼ 0; �10 � x � 10:

Here qðx;�Þ is nearly constant over the range except for a sharp inverted spike over approximately
�0:1 � x � 0:1. There is a danger that the routine will build up to a large step size and ‘step over’ the
spike without noticing it. By using break-points – say �0:5 – one can restrict the step size near the spike
without impairing the efficiency elsewhere.

The code for COEFFN could be:

SUBROUTINE COEFFN (P, Q, DQDL, X, ELAM, JINT)
...
P = 1.0
DQDL = 1.0 - 2.0 * EXP(-100.0*X*X)
Q = ELAM * DQDL
RETURN
END

XPOINT might contain -10.0, -10.0, -0.5, 0.5, 10.0, 10.0 (assuming �10, are regular points) and m would
be 6. HMAXð1; jÞ, j ¼ 1; 2; 3 might contain 0.0, 0.1 and 0.0.

8.5 Examples of Boundary Conditions at Singular Points

Quoting from page 243 of Bailey (1966): ‘Usually ... the differential equation has two essentially different
types of solutions near a singular point, and the boundary condition there merely serves to distinguish one
kind from the other. This is the case in all the standard examples of mathematical physics’.

In most cases the behaviour of the ratio pðxÞy0=y near the point is quite different for the two types of
solution. Essentially what the user provides through the BDYVAL routine is an approximation to this
ratio, valid as x tends to the singular point (SP).

The user must decide (a) how accurate to make this approximation or asymptotic formula, for example
how many terms of a series to use, and (b) where to place the boundary matching point (BMP) at which
the numerical solution of the differential equation takes over from the asymptotic formula. Taking the
BMP closer to the SP will generally improve the accuracy of the asymptotic formula, but will make the
computation more expensive as the Pruefer differential equations generally become progressively more ill-
behaved as the SP is approached. The user is strongly recommended to experiment with placing the
BMPs. In many singular problems quite crude asymptotic formulae will do. To help the user avoid
needlessly accurate formulae, D02KDF outputs two ‘sensitivity coefficients’ �l; �r which estimate how
much the errors at the BMPs affect the computed eigenvalue. They are described in detail below, see
Section 8.6.

Example of coding BDYVAL:

The example below illustrates typical situations:

y00 þ �� x� 2

x2

� �
y ¼ 0; on 0 < x < 1

the boundary conditions being that y should remain bounded as x tends to 0 and x tends to 1.

At the end x ¼ 0 there is one solution that behaves like x2 and another that behaves like x�1. For the first

of these solutions pðxÞy0=y is asymptotically 2=x while for the second it is asymptotically �1=x. Thus the
desired ratio is specified by setting

YLð1Þ ¼ x and YLð2Þ ¼ 2:0:

At the end x ¼ 1 the equation behaves like Airy’s equation shifted through �, i.e., like y00 � ty ¼ 0 where
t ¼ x� �, so again there are two types of solutions. The solution we require behaves as

expð� 2

3
t
3
2Þ=

ffiffi
t4

p

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.11

and the other as

expðþ 2

3
t
3
2Þ=

ffiffi
t4

p
:

Hence, the desired solution has pðxÞy0=y 	 �
ffiffi
t

p
so that we could set YLð1Þ ¼ 1:0 and

YLð2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
x� �

p
. The complete subroutine might thus be

SUBROUTINE BDYVAL (XL, XR, ELAM, YL, YR)
real XL, XR, ELAM, YL(3), YR(3)
YL(1) = XL
YL(2) = 2.0
YR(1) = 1.0
YR(2) = -SQRT(XR-ELAM)
RETURN
END

Clearly for this problem it is essential that any value given by D02KDF to XR is well to the right of the
value of ELAM, so that the user must vary the right-hand BMP with the eigenvalue index k. One would
expect �k to be near the kth zero of the Airy function AiðxÞ, so there is no problem estimating ELAM.

More accurate asymptotic formulae are easily found: near x ¼ 0 by the standard Frobenius method, and

near x ¼ 1 by using standard asymptotics for AiðxÞ, Ai0ðxÞ, e.g., see page 448 of Abramowitz and
Stegun (1972).

For example by the Frobenius method the solution near x ¼ 0 has the expansion

y ¼ x2ðc0 þ c1xþ c2x
2 þ . . .Þ

with

c0 ¼ 1; c1 ¼ 0; c2 ¼
��

10
; c3 ¼ 1

18
; . . . ; cn ¼ cn�3 � �cn�2

nðnþ 3Þ :

This yields

pðxÞy0

y
¼

2� 2
5
�x2 þ � � �

x 1� �
10
x2 þ � � �

� � :

8.6 The Sensitivity Parameters \sigma_{l} and \sigma_{r}

The sensitivity parameters �l, �r (held in HMAXð1;m� 1Þ and HMAXð1;mÞ on output) estimate the

effect of errors in the boundary conditions. For sufficiently small errors �y, �py0 in y and py0

respectively, the relations

�� ’ ðy:�py0 � py0:�yÞl�l

�� ’ ðy:�py0 � py0:�yÞr�r

are satisfied, where the subscripts l, r denote errors committed at the left- and right-hand BMPs
respectively, and �� denotes the consequent error in the computed eigenvalue.

8.7 Missed Zeros

This is a pitfall to beware of at a singular point. If the BMP is chosen so far from the SP that a zero of the
desired eigenfunction lies in between them, then the routine will fail to ‘notice’ this zero. Since the index
of k of an eigenvalue is the number of zeros of its eigenfunction, the result will be that

(a) the wrong eigenvalue will be computed for the given index k – in fact some �kþk0 will be found

where k0 � 1;

(b) the same index k can cause convergence to any of several eigenvalues depending on the initial values
of ELAM and DELAM.

It is up to the user to take suitable precautions – for instance by varying the position of the BMPs in the
light of knowledge of the asymptotic behaviour of the eigenfunction at different eigenvalues.

D02KDF NAG Fortran Library Manual

D02KDF.12 [NP3546/20A]

9 Example

We find the 11th eigenvalue of the example of Section 8.5 of the documents for D02KDF, using the simple
asymptotic formulae for the boundary conditions. The results exhibit slow convergence, mainly because
XPOINT is set so that the shooting matching point c is at the right-hand end x ¼ 30:0. The example
results for D02KEF show that much faster convergence is obtained if XPOINT is set to contain an
additional break-point at or near the maximum of the coefficient function qðx;�Þ, which in this case is at

x ¼
ffiffiffi
43

p
.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02KDF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER M
PARAMETER (M=4)

* .. Local Scalars ..
real DELAM, ELAM, TOL
INTEGER IFAIL, IFLAG, K, MAXIT

* .. Local Arrays ..
real HMAX(2,M), XPOINT(M)

* .. External Subroutines ..
EXTERNAL BDYVL, COEFF, D02KAY, D02KDF

* .. Executable Statements ..
WRITE (NOUT,*) ’D02KDF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’A singular problem’
TOL = 1.0e-4
XPOINT(1) = 0.0e0
XPOINT(2) = 0.1e0
XPOINT(3) = 30.0e0
XPOINT(4) = 30.0e0
HMAX(1,1) = 0.0e0
MAXIT = 0
K = 11
ELAM = 14.0e0
DELAM = 1.0e0
IFLAG = 0
IFAIL = 0

*
* * To obtain monitoring information from the supplied
* subroutine MONIT replace the name D02KAY by MONIT in
* the next statement, and declare MONIT as external *
*

CALL D02KDF(XPOINT,M,COEFF,BDYVL,K,TOL,ELAM,DELAM,HMAX,MAXIT,
+ IFLAG,D02KAY,IFAIL)

*
WRITE (NOUT,*)
WRITE (NOUT,*) ’Final results’
WRITE (NOUT,*)
WRITE (NOUT,99999) ’K =’, K, ’ ELAM =’, ELAM, ’ DELAM =’, DELAM
WRITE (NOUT,99998) ’HMAX(1,M-1) =’, HMAX(1,M-1),

+ ’ HMAX(1,M) =’, HMAX(1,M)
STOP

*
99999 FORMAT (1X,A,I3,A,F12.3,A,e12.2)
99998 FORMAT (1X,A,F10.3,A,F10.3)

END
*

SUBROUTINE COEFF(P,Q,DQDL,X,ELAM,JINT)
* .. Scalar Arguments ..

real DQDL, ELAM, P, Q, X
INTEGER JINT

D02 – Ordinary Differential Equations D02KDF

[NP3546/20A] D02KDF.13

* .. Executable Statements ..
P = 1.0e0
Q = ELAM - X - 2.0e0/(X*X)
DQDL = 1.0e0
RETURN
END

*
SUBROUTINE BDYVL(XL,XR,ELAM,YL,YR)

* .. Scalar Arguments ..
real ELAM, XL, XR

* .. Array Arguments ..
real YL(3), YR(3)

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements ..
YL(1) = XL
YL(2) = 2.0e0
YR(1) = 1.0e0
YR(2) = -SQRT(XR-ELAM)
RETURN
END

*
SUBROUTINE MONIT(MAXIT,IFLAG,ELAM,FINFO)

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real ELAM
INTEGER IFLAG, MAXIT

* .. Array Arguments ..
real FINFO(15)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
IF (MAXIT.EQ.-1) THEN

WRITE (NOUT,*)
WRITE (NOUT,*) ’Output from MONIT’

END IF
WRITE (NOUT,99999) MAXIT, IFLAG, ELAM, (FINFO(I),I=1,4)
RETURN

*
99999 FORMAT (1X,2I4,F10.3,2e12.2,2F8.1)

END

9.2 Program Data

None.

9.3 Program Results

D02KDF Example Program Results

A singular problem

Final results

K = 11 ELAM = 14.947 DELAM = 0.86E-03
HMAX(1,M-1) = -0.000 HMAX(1,M) = 5.456

D02KDF NAG Fortran Library Manual

D02KDF.14 (last) [NP3546/20A]

	D02KDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	XPOINT
	M
	COEFFN
	P
	Q
	DQDL
	X
	ELAM
	JINT

	BDYVAL
	XL
	XR
	ELAM
	YL
	YR

	K
	TOL
	ELAM
	DELAM
	HMAX
	MAXIT
	MAXFUN
	MONIT
	MAXIT
	IFLAG
	ELAM
	FINFO

	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 General Description of the Algorithm
	8.3 The Position of the Shooting Matching Point c
	8.4 Examples of Coding the COEFFN Routine
	8.5 Examples of Boundary Conditions at Singular Points
	8.6 The Sensitivity Parameters \sigma_{l} and \sigma_{r}
	8.7 Missed Zeros

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

